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Consider all words in {1, . . . , n}. A fixed set of words is labeled as the set of “mistakes”. A
generating function for the number of words with m,1’s,. . ., mnn’s and k mistakes is given.
This generalizes a result of Gessel who considered the case where all the mistakes are
two-lettered. A similar result has been independently obtained by Goulden and Jackson.

1.

Fix an alphabet {1,...,n}. To every word w=o-1-'-o-, we associate the
monomial xw = x0l - - - x0I in the non—commuting indeterminates x1, . . . , x". A
subword of 0-1 - - - 0-, is anything of the form cricr,+1 ' - - 0,, 1 s i S 1' $ 1. Let L be a
set of words to be labeled as “mistakes”. We assume that no proper subword of a
mistake is a mistake. The number of subwords of w which belong to L is the
number of mistakes of w and will be denoted by d(w). For example if L:
{123, 231}, d(1231) = 2, because both 123 and 231 belong to L. A word w is said
to be of type (m1, . . . , m”) if it has m1 1’s, m2 2’s, . . . , m,l n’s; e.g. the type of
12112331 is (4, 2, 2). Let M be the set of words w such that every letter of w
belongs to some mistake and every mistake, except the last, overlaps, on the right,
with another mistake. For example if L={123, 231,312}, M={123, 231, 312,
1231, 2312, 3123, 12312, 23123, 31231,... ,etc.}.

The following is a generalization of Theorem 7.2 in Gessel [2]; Gessel’s
theorem considers the case where L only contains two-lettered words.

Theorem
2 td(w)xw = [1_x1_ . . ._xn— Z (t— 1)d(°)x”]—1. (1)

weall words oeM

Proof. Let s(w) denote the type of a word w. Let C(m) = C(ml, . . . , m") be the
set of words of type m =(m1, . . . , m"). Define

F(m) = 2 WW. (2)
we(m)
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We shall prove that for m7E0

F(m) = _: F(m — ei)xi + Z (t— 1)d(")F(m — s(v))x", (3)
I oeM

where ei =(0, . . . , 1, 0,. . . , 0) with the 1 on the ith place.
This will be accomplished by showing that for any w e C(m), the coefficient of

Wx in the r.h.s. of (3) is td‘W). Indeed, let w2 be the maximal tail of w which
belongs to M; then w = wlw2 for some word WI, and d(w) = d(w1)+d(w2). Note
that w has d(w2) tails which belong to M and thus xw appear d (w2)+ 1 times in
the r.h.s of (3). Since w loses a mistake by chopping off its last letter and loses
k+1 mistakes by chopping off a tail which belongs to M and which has k
mistakes, the coeflicient of x‘” in the r.h.s. of (3) is (Put d(w1) = d1, d(w2) = d2):

td‘[td=_1 + (t — 1)t“2‘2+(t— 1)2t“='3+~ - -+ (t — 1)“?1 + (t— 1)“2] = td'td= = t“‘”’.
Here we used (2) with m replaced by m —ei and m —s(v).
Let 8(m) be the discrete delta function: 8(0) = 1; 6(m) = 0, m7é0. Then, since

F(0) = 1 and by convention F is zero outside N":

F(m)— Z F(m—ei)xi — Z (t—1)d<v>F(m—s(v))xv =6(m).
i=1 DEM

Summing both sides over all In 62" yields

2 fumxw l—xl—x2—' ' '—xn— Z (t—l)d(u)x° =1,[ ll ]w 6 all words 1) EM

from which (1) follows.

2. The commutative case

If we let x1, . . . ,xn commute in (1) we obtain a generating function for
G(m; k), the number of words of type m with exactly k mistakes:

2 G(m1,. . ., m"; k)x'1"' - ~ - xi,"v-tk
—i

=[1-x1--'-—xn— Z (t_1)d(v)xu] _ (4)
DEM

Example. n = 3, L ={123, 132}. Here L =M and

Z G(ml, m2, m3, k)x'1"1x'2"2x§‘3t" =[1—x1—x2—x3+2(1— t)x1x2x3]“.

Putting t= —1 we get

coefficient of xT1x§2x§"- in [1 — x1 — x2— x3 +4x1x2x-3]_1 =

#{words in C(m) with an even number of mistakes}
—#{words in C(m) with an odd number of mistakes}.
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Askey and Gasper [1] proved that the l.h.s. is positive. It will be nice to give a
direct proof that the r.h.s. is positive.

Finally let us mention that whenever L is finite but M is infinite it is still
possible to evaluate the sum on the r.h.s. of (4) using the geometric series
expansion of a certain matrix: ZA" =(I—A)‘1. Thus whenever L is finite the
generating function Z G(m; k) x"'t" is a rational function. The details are left to
the sufficiently interested reader.

Remark. The results of this paper have been obtained independently by Goulden
and Jackson [3]. We refer the reader to this very interesting paper for detailed
applications and algorithms.
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